domingo, 16 de junio de 2013

tipos de cadena de carbono

Una cadena carbonada es el esqueleto de prácticamente todos los compuestos orgánicos y está formada por un conjunto de varios átomos de carbono, unidos entre sí mediante enlaces covalentes carbono-carbono y a la que se unen o agregan otros átomos como hidrógeno, oxígeno o nitrógeno, formando variadas estructuras, lo que origina infinidad de compuestos diferentes.1
La facilidad del carbono para formar largas cadenas es casi específica de este elemento y es la razón del elevado número de compuestos de carbono conocidos, si lo comparamos con compuestos de otros átomos.2 Las cadenas carbonadas son bastante estables y no sufren variación en la mayoría de las reacciones orgánicas.
La forma más sencilla entre los átomos de carbono es la siguiente:
Como el par de electrones (enlace covalente) se puede representar por medio de un guión; resulta:
Las cadenas que presentan los átomos de carbono en forma consecutiva, como las arriba representadas, se denominan lineales onormales. Además, por tener los extremos libres, se llaman abiertas o acíclicas.
En otras ocaciones las cadenas tienen mayor complejidad:
Estas estructuras reciben el nombre de cadenas ramificadas.
En algunos casos, los extremos de la cadena se unen formando un anillo o ciclo:
Este tipo de cadena se llaman cerradas o cíclicas. Los ciclos más comunes están formados por cinco (5) o seis (6) átomos de carbono.

compuestos organicos-hidrocarburos

Compuesto orgánico o molécula orgánica es una sustancia química que contiene carbono, formando enlaces carbono-carbono ycarbono-hidrógeno. En muchos casos contienen oxígenonitrógenoazufrefósforoborohalógenos y otros elementos menos frecuentes en su estado natural. Estos compuestos se denominan moléculas orgánicas. Algunos compuestos del carbono, carburos, los carbonatos y los óxidos de carbono, no son moléculas orgánicas. La principal característica de estas sustancias es que arden y pueden ser quemadas (son compuestos combustibles). La mayoría de los compuestos orgánicos se producen de forma artificial mediante síntesis química aunque algunos todavía se extraen de fuentes naturales.
Los hidrocarburos son compuestos orgánicos formados únicamente por átomos de carbono e hidrógeno. La estructura molecular consiste en un armazón de átomos de carbono a los que se unen los átomos de hidrógeno. Los hidrocarburos son los compuestos básicos de la Química Orgánica. Las cadenas de átomos de carbono pueden ser lineales o ramificadas y abiertas o cerradas. Los que tienen en su molécula otros elementos químicos (heteroátomos),se denominan.



alcanos

Los alcanos son hidrocarburos, es decir, que tienen solo átomos de carbono e hidrógeno. La fórmula general para alcanos alifáticos (de cadena lineal) es CnH2n+2,1 y para cicloalcanos es CnH2n.2 También reciben el nombre de hidrocarburos saturados.
Los alcanos son compuestos formados solo por átomos de carbono e hidrógeno, no presentan funcionalización alguna, es decir, sin la presencia de grupos funcionales como el carbonilo (-CO)carboxilo (-COOH)amida (-CON=), etc. La relación C/H es de CnH2n+2 siendo n el número de átomos de carbono de la molécula, (como se verá después esto es válido para alcanos de cadena lineal y cadena ramificada pero no para alcanos cíclicos). Esto hace que su reactividad sea muy reducida en comparación con otros compuestos orgánicos, y es la causa de su nombre no sistemático: parafinas (del latín, poca afinidad). Todos los enlaces dentro de las moléculas de alcano son de tipo simple o sigma, es decir, covalentes por compartición de un par de electrones en un orbital s, por lo cual la estructura de un alcano sería de la forma:

grupos alquilo

El grupo alquilo (nombre derivado de alcano con la terminación ilo) es un sustituyente, formado por la separación de un átomo dehidrógeno de un hidrocarburo saturado o alcano,1 para que así el alcano pueda enlazarse a otro átomo o grupo de átomos.
Se puede suponer que un grupo alquilo puede formarse a partir de un alcano, pero estos grupos no existen por separado (en ese caso se llaman radicales alquilo), o sea, los grupos alquilo no son compuestos en sí mismos, sino partes de compuestos mayores.2 Los grupos alquilo siempre se encuentran unidos a otro átomo o grupo de átomos, como en el gráfico de la derecha.
Grupo alquilo Estructura Fórmula Cadena y Tipo de alquilo Ejemplo
Butil o butilo CH3-CH2-CH2-CH2- Cadena lineal
Alquilo primario
sec-butil CH3-CH-CH2-CH3 Cadena lineal
Alquilo secundario
2-metilpropil
ó Isobutil CH3-CH(CH3)-CH2- Cadena ramificada
Alquilo primario
ter-butil CH3-C(CH3)-CH3 Cadena ramificada
Alquilo Terciario
[editar]Ejemplos de grupos alquilo
A continuación se dan los nombres de algunos grupos alquilo típicos:
Grupo funcional Símbolo Fórmula Estructura Prefijo Sufijo Ejemplo
Grupo metilo
Me -CH3 metil- -metano
Grupo etilo
Et -CH2CH3 etil- -etano
Grupo propilo
n-Pr -CH2CH2CH3 propil- N-propano
i-Pr -CH(CH3)2 isopropil- isopropano 
 

alquenos

Los alquenos son hidrocarburos que tienen un doble enlace carbono-carbono. La palabra olefina se usa con frecuencia como sinónimo, pero el término preferido es alqueno. Los alquenos abundan en la naturaleza. Por ejemplo, el etileno es una hormona vegetal que induce la maduración de las frutas. Sería imposible la vida sin alquenos como el b-caroteno, compuesto que contiene once dobles enlaces. Es un pigmento anaranjado que produce el color de las zanahorias y una valiosa fuente dietética de vitamina A; también se cree que proporciona cierta protección contra algunos tipos de cáncer.
Debido a su doble enlace un alqueno tiene menos hidrógenos que un alcano con la misma cantidad de carbonos, CnH2n para el alqueno versus, CnH2n+2 para el alcano, el alqueno se llama no saturado. Por ejemplo, el etileno tiene la fórmula C2H4, mientras que la fórmula del etano es C2H6.
En general, cada anillo o doble enlace en una molécula corresponde a una pérdida de dos hidrógenos respecto a la fórmula de su alcano, CnH2n+2. Si se conoce esta relación, es posible avanzar hacia atrás, desde una fórmula molecular, para calcular el grado de insaturación de ella, que es la cantidad de anillos, enlaces múltiples o ambos que contiene.

alquinos

Los alquinos son un tipo de hidrocarburos caracterizado por la presencia en su estructura de un triple enlace a modo de grupo funcional entre carbonos, el cual confiere las propiedades químicas, comportamiento o reactividad propia de este tipo de compuestos.
Los alquinos siguen la fórmula CnH2n-2, y sus átomos de carbono poseen una hibridación de tipo sp.
Los alquinos tienen puntos de ebullición parecidos a su correspondiente alqueno o alcano. Cabe destacar el caso del etino, el cual no tiene punto de ebullición a presión normal o atmosférica, pues sublima a los -84ºC.
A continuación se resumirá la reactividad que le confiere el triple enlace a los alquinos, aunque se menos que en el caso de los alquenos, esta le le confiere sus propiedades químicas:
Los alquinos pueden ser obtenidos a través de un proceso de eliminación del grupo HX(donde X es un halógeno), partiendo de halogenuros de alquilo, proceso similar al utilizado en los alquenos. En cambio, como un alquino se encuentra insaturado por partida doble, es vital proceder a la eliminación de dos moléculas de HX.
El proceso de halogenación y deshidrohalogenación, constituyen un método aceptable y útil para la transformación de un alqueno en un alquino, ya que los dihalogenuros que se necesitan para el proceso anteriormente mencionado, se pueden obtener de manera sencilla al adicionar un halógeno como un bromo o un cloro a un alqueno.

grupos funcionales

Para comprender lo que son o significan los grupos funcionales es necesario adentrarnos o repasar el mundo de la quimica organica donde el carbono es la figura principal.
El carbono (C) está ubicado en la segunda hilera de la tabla periodica y tiene cuatro electrones de enlace en su envoltura de valencia. Al igual que otros no metales, el carbono necesita ocho electrones para completar su envoltura de valencia.
Por consiguiente, el carbono puede formar hasta cuatro enlaces con otros átomos (cada enlace representa uno de los electrones del carbono y uno de los electrones del átomo que se enlazan).
Cada valencia de electrón participa en el enlace, por consiguiente el enlace del átomo de carbono se distribuirá de modo uniforme sobre la superficie del átomo.
Estos enlaces forman un tetradrón (una pirámide con una punta en la parte superior), como se ilustra en la figura a la derecha.
La diversidad de los productos químicos orgánicos se debe a la infinidad de opciones que brinda el carbono para enlazarse con otros átomos. Los químicos orgánicos más simples, llamados hidrocarburos, contienen sólo carbono y átomos de hidrógeno; el hidrocarburo más simple (llamado metano) contiene un solo átomo de carbono enlazado a cuatro átomos de hidrógeno.


macromoleculas

Las macromoléculas son moléculas que tienen una masa molecular elevada, formadas por un gran número de átomos. Generalmente se pueden describir como la repetición de una o unas pocas unidades mínimas o monómeros, formando los polímeros.
El término macromolécula se refiere a las moléculas que pesan más de 10.000 dalton de masa atómica.1 Pueden ser tanto orgánicascomo inorgánicas, y algunas de gran relevancia se encuentran en el campo de la bioquímica, al estudiar las biomoléculas. Dentro de lasmoléculas orgánicas sintéticas se encuentran los plásticos. Son moléculas muy grandes, con una masa molecular que puede alcanzar millones de UMAs que se obtienen por las repeticiones de una o más unidades simples llamados "monómeros" unidos entre sí mediante enlaces covalentes.
Por lo general, se analizan moléculas en el que el número de átomos es muy pequeño, que además constan de una masa molecular relativamente pequeña. Por ejemplo, la molécula de la sal común (NaCl) consta de sólo dos átomos y la masa molecular relativa es de 58. En cambio, existen muchas clases de moléculas que poseen una composición mucho más complicada, es decir, una gran cantidad de átomos y un valor grande en su masa molecular; a esta clase de composiciones se le denomina macromoléculas. Específicamente, una macromolécula tiene una cantidad mínima de 1000 y una masa no menos de 10.000. Además los eslabones que unen la molécula no conducen a variación en las propiedades físicas, si estos son adicionados de manera complementaria.
 Su fórmula química es C575H901O193N171S12, y su masa molecular relativa es de 13.682. Los polímeros son sustancias conformadas por macromoléculas.
Desde hacía un tiempo se denominaron a cierto grupo de moléculas los coloides, en una época que no se conocía la existencia de la macromolécula. Los coloides tienen una apariencia gelatinosa adhesiva, con una velocidad de difusión pequeña sin poder atravesar las membranas, contrario a lo que ocurre, por ejemplo, con la sal común, que se difunde muy bien y pasa a través de las membranas. Estas sustancias fueron llamadas cristaloides por su buena conformación estructural. En lo sucesivo fue descubierto que, en condiciones determinadas, los cristaloides podían adquirir un “estado coloidal”, si se lograba unir sus moléculas en grupos y con una masa relativa baja. La agregación de las moléculas de los cristaloides que conducen a la aparición de las propiedades coloidales de sus moléculas, es por lo general una manifestación de las fuerzas de la valencia secundaria y el enlace de los átomos en las macromoléculas es covalente.

carbohidratos

Los carbohidratos han sido culpados por el exceso de peso desde hace mucho tiempo. Se trata de una noción general de que el consumo de productos ricos en hidratos de carbono, uno tiende a ganar mucho peso. Sin embargo, no mucha gente es consciente del hecho de que hay dos tipos de Carbohidratos – buenos y malos, y es el consumo de este último tipo el que lleva a una expansión en la cintura y muchos otros problemas de salud también. Los carbohidratos buenos son, de hecho, el proveedor de nutrientes esenciales para nuestro cuerpo, haciendo un ajuste entre la persona y la salud.
Por lo tanto, todo lo que necesitas hacer es averiguar los carbohidratos buenos y los malos carbohidratos y aumentar el consumo de la primera. A continuación, hemos proporcionado una lista de carbohidratos buenos y carbohidratos malos, para ayudar a planificar la dieta de una mejor manera.

Lista de carbohidratos buenos

Los buenos carbohidratos proporcionan al organismo las vitaminas esenciales, minerales y una larga lista de importantes fitonutrientes. Son ricos en fibra, que proveen al cuerpo con los nutrientes esenciales y la energía que necesita. Además, después de comer alimentos ricos en carbohidratos buenos, una persona tiende a sentirse llena y satisfecha por mucho tiempo.
  • Espárragos
  • Aguacate
  • Remolacha
  • Pimientos
  • Brócoli
  • Coles de Bruselas
  • Coliflor
  • Zanahorias
  • Apio
  • Berza
  • Maíz
  • Pepinos
  • Berenjena
  • Ajo
  • Judías verdes y guisantes verdes
  • Setas
  • Hojas de mostaza
  • Ocra
  • Aceitunas
  • Cebolla
  • Patatas y camotes
  • Calabaza
  • Lechuga Romana
  • Espinacas
  • Squash
  • Tomates
  • Hojas de nabo
  • Berro
  • Calabacín
  • Manzanas
  • Albaricoques
  • Plátanos
  • Fresas, frambuesas, moras, arándanos
  • Cantalupo
  • Cerezas
  • Dátiles
  • Higos
  • Jugos de frutas
  • Pomelo
  • Uvas
  • Guayaba
  • Kiwi
  • Limas y limones
  • Mangos
  • Nectarinas
  • Naranjas
  • Papayas
  • Melocotones y Peras
  • Caquis
  • Piña
  • Ciruelas
  • Pasas
  • Sandía
  • Frijoles, alubias y legumbres
  • Nueces crudas y semillas
  • Grasa de lácteos
  • Pasta de grano entero
  • Arroz

lipidos

Una característica básica de los lípidos, y de la que derivan sus principales propiedades biológicas es la hidrofobicidad. La baja solubilidad de los lipídos se debe a que su estructura química es fundamentalmente hidrocarbonada (alifática, alicíclica o aromática), con gran cantidad de enlaces C-H y C-C (Figura de la izquierda). La naturaleza de estos enlaces es 100% covalente y su momento dipolar es mínimo. El agua, al ser una molécula muy polar, con gran facilidad para formar puentes de hidrógeno, no es capaz de interaccionar con estas moléculas. En presencia de moléculas lipídicas, el aguaadopta en torno a ellas una estructura muy ordenada que maximiza las interacciones entre las propias moléculas de agua, forzando a la molécula hidrofóbica al interior de una estructura en forma de jaula, que también reduce la movilidad del lípido. Todo ello supone una configuración de bajaentropía, que resulta energéticamente desfavorable. Esta disminución de entropía es mínima si las moléculas lipídicas se agregan entre sí, e interaccionan mediante fuerzas de corto alcance, como las fuerzas de Van der Waals. Este fenómeno recibe el nombre de efecto hidrofóbico.

funciones de los lipidos:
  1. Función de reserva. Son la principal reserva energética del organismo. Un gramo de grasa produce 9'4 kilocalorías en las reacciones metabólicas de oxidación, mientras que proteínas y glúcidos sólo producen 4'1 kilocaloría/gr.
  2. Función estructural. Forman las bicapas lipídicas de las membranas. Recubren órganos y le dan consistencia, o protegen mecánicamente como el tejido adiposo de piés y manos.
  3. Función biocatalizadora. En este papel los lípidos favorecen o facilitan las reacciones químicas que se producen en los seres vivos. Cumplen estafunción las vitaminas lipídicas, las hormonas esteroideas y las prostaglandinas.
  4. Función transportadora. El tranporte de lípidos desde el intestino hasta su lugar de destino se raliza mediante su emulsión gracias a los ácidos biliares y a los proteolípidos.

Una molécula de grasa está formada por tres ácidos grasos unidos a una molécula de glicerol (de aquí el término "triglicérido"). Las largas cadenas hidrocarbonadas que componen los ácidos grasos terminan en grupos carboxilo (-COOH), que se unen covalentemente a la molécula de glicerol. Las propiedades físicas de una grasa, como por ejemplo su punto de fusión, están determinadas por las longitudes de sus cadenas de ácidos grasos y dependen también de si las cadenas son saturadas o no saturadas. Los ácidos grasos pueden estar saturados, es decir, no presentar enlaces dobles. También pueden estar insaturados, es decir, tener átomos de carbono unidos por enlaces dobles. Las cadenas rectas de los ácidos grasos saturados permiten el empaquetamiento de las moléculas, produciendo un sólido como la manteca o el cebo. En los grasos insaturados, los dobles enlaces provocan que las cadenas se doblen; esto tiende a separar las moléculas, produciendo un líquido como el aceite de oliva o de girasol.

proteinas

Las proteínas se ensamblan a partir de sus aminoácidos utilizando la información codificada en los genes. Cada proteína tiene su propia secuencia de aminoácidos que está especificada por la secuencia de nucleótidos del gen que la codifica. El código genético está formado por un conjunto de tri-nucleótidos denominados codones. Cada codón(combinación de tres nucleótidos) designa un aminoácido, por ejemplo AUG (adenina-uracilo-guanina) es el código para la metionina. Como el ADN contiene cuatro nucleótidos distintos, el número total de codones posibles es 64; por lo tanto, existe cierta redundancia en el código genético, estando algunos aminoácidos codificados por más de un codón. Los genes codificados en el ADN se transcriben primero en ARN pre-mensajero mediante proteínas como la ARN polimerasa. La mayor parte de los organismos procesan entonces este pre-ARNm (también conocido como tránscrito primario) utilizando varias formas de modificación post-transcripcional para formar ARNm maduros, que se utilizan como molde para la síntesis de proteínas en el ribosoma. En los procariotas el RNAm puede utilizarse tan pronto como se produce, o puede unirse al ribosoma después de haberse alejado del nucleoide. Por el contrario, los eucariotas sintetizan el ARNm en el núcleo celular y lo translocan a través de la membrana nuclear hasta el citoplasma donde se realiza la síntesis proteica. 
Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan. Son proteínas:

configuracion electronica

Al referirnos a la configuración electrónica (o periódica)  estamos hablando de la descripción de la ubicación de los electrones en los distintos niveles (con subniveles y orbitales) de un determinado átomo.
configuracion018
Modelo atómico general.
Configurar significa "ordenar" o "acomodar", y electrónico deriva de "electrón"; así, configuración electrónica es la manera ordenada de repartir los electrones en los niveles y subniveles de energía.

geometria molecular

La geometría tridimensional de las moléculas está determinada por la orientación relativa de sus enlaces covalentes. En 1957 el químico canadiense Ron Gillespie basándose en trabajos previos de Nyholm desarrolló una herramienta muy simple y sólida para predecir la geometría (forma) de las moléculas.
La teoría por él desarrollada recibe el nombre Teoría de Repulsión de los Pares de Electrones de Valencia (TRPEV) y se basa en el simple argumento de que los grupos de electrones se repelerán unos con otros y la forma que adopta la molécula será aquella en la que la repulsión entre los grupos de electrones sea mínima.
Para la TRPEV grupos de electrones pueden ser:
  • un simple enlace
  • un doble enlace
  • un triple enlace
  • un par de electrones no enlazante.
Para predecir la geometría de una molécula necesitamos conocer solamente cuantos grupos de electrones están asociados al átomo central para lo cual debemos escribir la fórmula de Lewis de la molécula.
Luego simplemente nos preguntamos como los grupos de electrones se distribuirán espacialmente de modo que la repulsión entre ellos sea mínima.
Es importante recordar que la geometría de la molécula quedará determinada solamente por la distribución espacial de los enlaces presentes y no por la posición de los pares electrónicos no enlazantes, los que si deberán ser tenidos en cuenta en el momento de determinar la disposición espacial de todos los grupos electrónicos, sean enlaces o no.
Por ejemplo 

En la tabla se muestran las distintas geometrías que adoptan las moléculas dependiendo de la cantidad de grupos elctrónicos y enlaces que presentan. 

Total átomos + pares no
enlazantes alrededor
del átomo central
Atomos
Pares no enlazantes
Geometría
Ejemplos
2
2
0
Lineal
CO2
3
3
2
0
1
Trigonal plana
Angular
BCl3
SO2
4
4
3
2
0
1
2
Tetraédrica
Pirámide trigonal
Angular
SiF4
PH3
H2S
5
5
4
3
2
0
1
2
3
Bipirámide trigonal
Balancín
Forma "T"
Lineal
PF5
SCl4
IF3
XeF2
6
6
5
4
0
1
2
Octaédrica
Pirámide b.cuadrada
Cuadrada plana
SiF6-2
IF5
ICl4-